Lecture Outline 2: ALKANES

Hydrocarbons - Compounds that contain only C and H

- Alkanes contain only single bonds (C-H, C-C), sp³
- Alkenes = contains C=C and has sp² hybridization (e.g. olefins)
- Alkynes = contains $C \equiv C$ and has sp hybridization (acetylenes)

Alkanes

- All carbons are sp³ hybridized (optimal bond angle of 109°)
- Single bonds (σ bonds).
- Tetrahedral geometry at every carbon
- Held together by London (dispersion) forces

Ex #1) CH₄, methane

$$BP = -164$$
 °C $CH_4 H_4C CH_3-H$

Ex #2) C₂H₆, ethane

$$H = H = -88^{\circ}C$$
 $H = H = -88^{\circ}C$
 $H = H = H$
 $H = H = H$

$$BP = -88 \ ^{\circ}C$$

$$C_2H_6 \qquad CH_3\text{-}CH_3 \qquad H_3C\text{-}CH_3$$

Ex #3) C₃H₈, propane

Ex #4) C_4H_{10} , butane

$$C_4H_{10}$$
, $CH_3CH_2CH_2CH_3$

BP = -42 °C n-Butane: normal straight chain butane

NOTE: Propane has a boiling point of -42°C, which is higher than methane because it's chain-like structure allows for more surface area for London dispersion forces to take effect.

Ex #5) C₄H₁₀, isobutane or i-Butane

structural isomer = constitutional isomer

- Isomers are different compounds that have the same molecular formula and different structure. They have different physical properties (e.g. mp, bp, odour, biological effects)

- iso - meros same - parts

one type: structural (same as constitutional) second type: stereoisomers (diastereomers and enantiomers) – will talk about more

Ex #6) Pentane C₅H₁₂

\ \ \ \ \ \

n - pentane Neopentane

-C- $\frac{1}{2}$

Neo Group

Ex #7) Hexane C₆H₁₄

Systematic (IUPAC) Nomenclature

RULES:

(isopentane or

2-methylbutane)

- 1. Find the longest straight chain
- 2. Number from end of the chain, so that the 1st branch point has the lowest number
- 3. Name the chain, then add prefixes (for the groups attached) with number and name the groups attached
- 4. Separate numbers and names by dash

<u>CHEM 261</u> Fall 2025 September 18, 2025

Common name: isopro<u>pyl</u> isobut<u>ane</u> neopentane
Systematic name: 2-methylpropane 2,2-dimethylpropane

Note: iso = second-to-last carbon of the chain is disubstituted (2 methyl groups) neo = second-to-last carbon of the chain is trisubstituted (3 methyl groups)

Prefixes for naming:

Di (2), Tri (3), Tetra (4), Penta (5), Hexa (6) etc.

Groups (part of an alkane structure)

- In naming the particular group, drop the "ane" part and add "yl" to the name
- For example, methane → methyl
- (i) Methyl group CH₃

(ii) Ethyl group – CH₂CH₃

(iii) Isopropyl group

iso-propyl group

iso-propyl alcohol

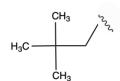
(iv) n-Propyl group

$$H_3C$$
 C
 C
 H_2

$$H_2$$
 C
 C
 OH
 H_3C
 H_2

n-propyl chain

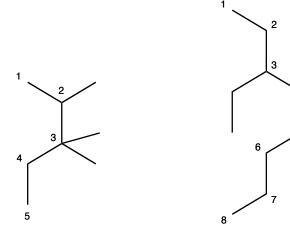
n-propyl alcohol


(v) tert-Butyl group (t-butyl)

$$\begin{array}{c} CH_3 \\ \longleftarrow CH_3 \\ CH_3 \end{array}$$

$$\begin{array}{ccc} \mathsf{CH_3} & & \mathsf{CH_3} \\ \hline -\mathsf{CH_3} & & \mathsf{CI} \hline -\mathsf{CH_3} \\ \mathsf{CH_3} & & \mathsf{CH_3} \end{array}$$

tert-Butyl chain tert-Butyl chloride


(vi) neo group

neo chain

2,2-dimethylbutane

Naming Examples:

2,3,3-trimethylpentane

3,5-diethyl-4-methyloctane

 $C_{13}H_{28}$

Cycloalkanes:

General Molecular Formula of Alkanes

- Linear alkanes: general formula is $C_NH_{2N} + 2$
- Each **degree of unsaturation** "removes" 2 hydrogens from the $C_NH_{2N} + 2$ formula
- (if there are no nitrogens in the molecule, there will always be an even # of hydrogens)
- Cylcoalkanes always have at least 1 degree of unsaturation

e.g

- o 1 Degree of unsaturation: C_NH_{2N} Alkanes with one ring or double bond
- \circ 2 Degrees of unsaturation: C_NH_{2N-2} Alkanes with two rings or double bonds, or one each

Note: Ring Structure Naming

- Parent ring is the largest one
- Prefix with "cyclo"
- Start with numbering at point of maximum branching/most important functional group
- Number so as to give next branch/functional group lowest number

Cyclopropane, C₃H₆

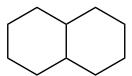
$$H \longrightarrow H = \bigoplus$$

- One degree of unsaturation (*n*-propane is C₃H₈)
 - Not a structural isomer (different molecular formula)
- C-C-C bond angle (60°)
- Highly reactive due to ring strain (sp³ carbons prefer to be 109°)

Cyclobutane, C₄H₈

Cyclopentane, C₅H₁₀

Cyclohexane, C₆H₁₂

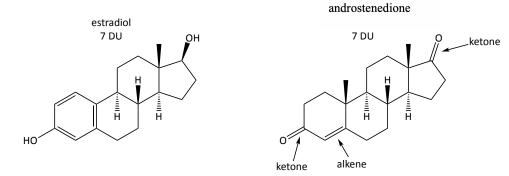

$$\begin{array}{c|c} H & H \\ H & C & H \\ H & C & C - H \\ H & C & H \end{array} \equiv \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}$$

Cycloheptane, C7H14

The degree of Unsaturation:

It is commonly referred to as the number of double bonds (π -bonds) or a ring. Each pibond or ring is an additional degree of unsaturation. This is because each installation of an olefin, or ring removes two hydrogens from the organic structure.

Decalin structure, C₁₀H₁₈

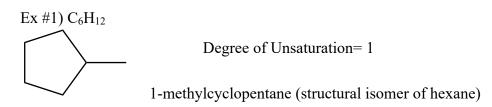


(two fused cyclohexenes) C_nH_{2n}-4_n

 $(4_n \text{ comes from the degree of unsaturation, two rings} = \text{two degrees of unsaturation.}$ One degree of unsaturation = -2H. Therefore, decalin is -4H)

<u>CHEM 261</u> Fall 2025 September 18, 2025

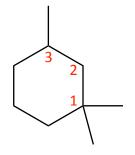
Example: steroids


OH H H

Testosterone

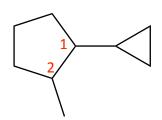
Molecular formula? Functional groups? Degrees of Unsaturation? How many methyls? How many methylenes? How many methines?

TEST YOURSELF


Examples of Naming Cycloalkanes:

Ex #2) C7H14

Degree of Unsaturation= 1


Ex #3) C₉H₁₈

1,1,3-trimethylcyclohexane

Degree of Unsaturation= 1

Ex #4) C₉H₁₆

1-cyclopropyl-2-methylcyclopentane

Degree of Unsaturation= 2

Ex #5) C₉H₁₆

1-Cyclopropylcyclohexane

Degree of Unsaturation= 2

Example 3 and 4 both have the formula C_9H_{16} so they are structural isomers

Ex #6) C₁₆H₃₂

<u>CHEM 261</u> Fall 2025 September 18, 2025

7-cyclopropyl-4-ethyl-2-methyldecane

Degree of Unsaturation= 1

Ex #7) C₁₂H₂₂

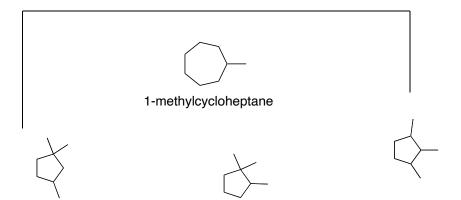
Degree of Unsaturation= 2

1-Cyclobutyl-3-ethyl-1-methylcyclopentane

ISOMERS

Structural (Constitutional) Isomers

Share the same molecular formula but have the atomic bonds in different places


Example 1

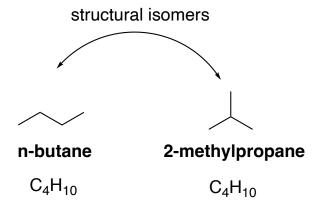
1,1-dimethylcyclohexane

The above three compounds are structural (also known as constitutional) isomers

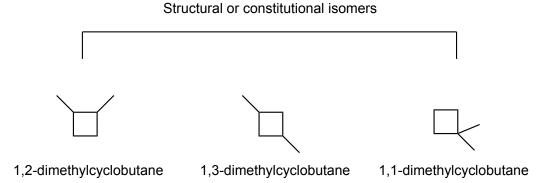
Example 2

Structural or constitutional isomers

1,1,3-trimethylcyclopentane


1,1,2-trimethylcyclopentane

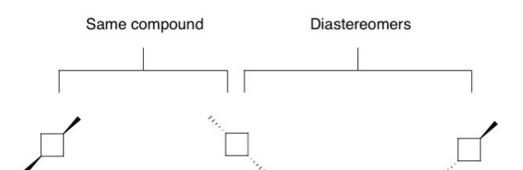
1,2,3-trimethylcyclopentae


Example 3

Structural isomers 1-methylcyclobutane 1-ethylcyclopropane

Example 4

Example 5


Stereoisomers

Compounds with the same molecular formula, same order of connection (base name) but connection of atoms that differ in 3D geometry

Two Types:

- 1. Diastereomers stereoisomers that are not mirror images (all stereoisomers that are not enantiomers)
- 2. Enantiomers stereoisomers that are non-superimposable mirror images of each other

Example: 1,3-dimethylcyclobutane

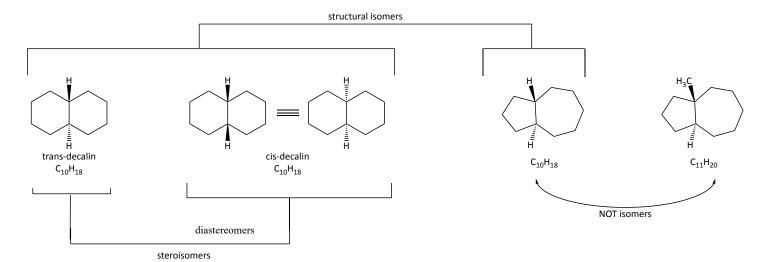
Cis stereoisomer

Trans stereoisomer

cis-1,3-dimethylcyclobutane

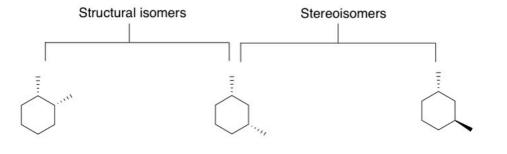
trans-1,3-dimethylcyclobutane

Structural Isomers:



The first and second compounds are the same compound rotated in 3D space. The third compound has different geometry at one center, making it a stereoisomer, specifically a diastereomer.

Cis - the substituents are on the same side of the ring


Trans - the substituents are on opposite sides of the ring

Example: decalin - C₁₀H₁₈

Example:

Example: 1,2-dimethylcyclohexane and 1,3-dimethylcyclohexane

cis-1,2-dimethylcyclohexane

1,3-Dimethyl-1-ethylcyclopentane

cis-1,3-dimethylcyclohexane

trans-1,3-dimethylcyclohexane

The second two compounds are diastereomers of each other.

Example: 1,3-dimethyl-3-ethylcyclohexane

Enantiomers (Non-superimposable mirror images of each other)

Example: Are these compounds structural isomer of each other?

These compounds are not structural isomers of each other because they have different molecular formulas